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M U L T I V A L U E D  S O L U T I O N S  OF T H E  S P A T I A L  

P R O B L E M S  OF N O N L I N E A R  D E F O R M A T I O N  

OF T H I N  C U R V I L I N E A R  R O D S  

V. V. Kuznetsov and S. V. Levyakov UDC 539.3 

We have developed a finite-element model to study the spatial deformation of elastic rods at 
large displacements. A numerical algorithm for constructing multivalued nonlinear solutions 
in the presence of many bifurcation and limit points is formulated. Results of a study of the 
stability supercritical equilibrium forms of elastic rods, which were supported experimentally, 
are reported. 

Beginning with the studies of Kirchhoff [1] and Clebsch [2], many publications have been devoted 
to the development of the theory of spatial bending of thin rods, for example, various versions of the 
nonlinear relations were discussed in [3-7] as applied to flexure in the region of large displacements and 
small elastic deformations. However, in practice the solution of the problems of nonlinear deformation of 
curvilinear rods causes some difficulties associated with the complexity of the description of finite rotations 
in a three-dimensional space. Exact analytical solutions can be derived only for a narrow class of problems [8] 
and, therefore, numerical methods of analysis acquire importance. The approaches to the construction of the 
solutions of a system of nonlinear differential equations that describe the finite displacements of curvilinear 
rods are considered [9, 10]. Ivanov and Ivanova [11, 12] developed the sdf-balanced discrepancy method as 
applied to calculation of stable equilibrium forms for cantilevered rods. 

A number of papers [13-17] dealt with the development of finite-element models. It is worth noting that 
the application of the proposed numerical approaches to the solution of nonlinear static problems for rods was 
mainly illustrated by the construction of one-valued branches of the solutions without analysis of the stability 
of the equilibrium states found. At the same time, the solution of the nonlinear deformation problems for 
thin elastic bodies is known to be closely connected with stability problems and analysis of possible singular 
points on the curves of equilibrium states (deformation curves). The authors are not aware of studies devoted 
to nonlinear solutions with many bifurcation points and an analysis of the stability of equilibrium forms. It is 
clear that obtaining such solutions in the general case is possible with the use of numerical algorithms that are 
attributed to both the mechanics of discrete deformable systems and the methods of analysis of the solutions 
of the corresponding systems of nonlinear equations. The methods of constructing such solutions have not 
been examined adequately. 

In the present paper, a finite element of a spatial deformable rod is proposed on the basis of the theory 
of kinematic groups [18]. Exact formulas for calculation of the coefficients of the first and second variations of 
the potential energy of the element are derived, which are used to formulate the conditions of equilibrium and 
stability. Problems of the construction of the solutions in the vicinity of singular points are considered. Two 
classical problems of flexure of a one-section beam and a circular ring under conservative loads are solved. It 
is shown that even in these known problems, there are many singular points and bifurcating solutions, which 
were not studied previously and which can be reproduced in experiments. 
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1. To formulate the finite-element model of a spatial rod, we use the propositions of the theory of 
kinematic groups [18], which is intended to construct discrete analogs of nonlinearly deformable bodies whose 
displacements and rotations are not restricted. We shall use the notation adopted in [18]. In addition, we shall 
use summation over repeat indices, unless otherwise specified. 

We select two nodal points (0 and 1) on the axial line of a rod (the lines of centoids of the transverse 
cross sections) and place, at each of them, two orthogonal vectors [d0j and dlj  (j = 1 and 2)] which lie in the 
plane of transverse cross sections. The thus-formed kinematic group is characterized by the following three 
metric tensors, the first of which is a scalar: 

all = r l r l ,  bl,,p = rldmp, c~p,q = d,,,pd,q (m, n = 0, 1 and p, q = 1, 2). 

Here rl = RI - R0 (R,,, are the nodal values of the radius-vector of the rod's axial line). 
We shall present relations for the kinematic group, which are necessary for subsequent manipulations. 

The strain tensors of the group are of the form 

1, v v 1 v v lirlV rlV -dmpdnq)  ~:11 = ~[rl  rl  -- r l r l ) ,  01rap = ~(r  I drop - rldrnp), ttmprtq = 2x-rnp-nq 

(m, n = 0 , 1 a n d  p, q = l ,  2), 

where the superscript v denotes the quantities attributed to the deformed state. 
For the first strain tensor, two variations can be 

variations for the second and third tensors: 

~II = r~/(6R~ -- 6R~) ,  ~2~ii = (6R~ -- 6P~)  2, 

1 k 
x-" f ,  s6s.,v 6~:-SdV 6kvrnprlq = ~ ~ ~"k Urnp nq 
s=O 

determined, whereas there are axbitraxy-order 

1 v k v k6r~6k-ldVp), 6kOlmp ---- ~ (r 1 6 drop q- 

(k -- 1, 2, . . . ) .  (1.1) 

Here C]~ are binominM coefficients. For subsequent manipulations, it suffices to confine ourselves to the case 
k --- 1 and 2, i .e. ,  to  consider the calculation of only two first variations of the strain tensors of the group. 

We assume that the added vectors at the nodes remain unit and orthogonal in the process of group 
deformation, i .e. ,  t h e  condition vmp,nq - 0 is satisfied (no summation over m) .  In th is  case,  the  variations of 
the added vectors in (1.1) axe given by the following formulas (no summation over ra): 

v 2 v (6, , , , , ,  v 6dVp 6w,,, x d,,,p, 6 d,,,p = 5w,,, x x : drop) (m = 0, I and p = 1, 2). (1.2) 

Here uJ., are the nodal values of the rotation vector. We shall use the expansion of the vector in the basis ei 
of the Cartesian coordinate system zi (i = 1, 2, and 3): 

Rm = eixmi, drop = eiAmpi, tom = eiW,ni (ra = 0, 1, p = 1, 2, and i = 1, 2, 3). (1.3) 

It follows from relations (1.1)-(1.3) that three variations of the Cartesian coordinates and three variations of 
the components of the rotation vector correspond to each node. Thus, the possible states of the kinematic 
groups considered are characterized by a 12-component vector of the variations of the generalized coordinates: 

6q t = [6q t, 6q:], 6qtm = [6xVl, 6xv2, 6xv3, &amh 6win2,6win3]. 

The strain state of the groups is determined by six independent components which form the vector of 
generalized elastic displacements: u t = [~11,0101,0102, 0111,0112,0] (0 = VllO2 - v1201 is a parameter that 
characterizes the mutual rotations of the planes of transverse cross sections at the nodes of the group). 

2. We shall consider the strain relations for the finite element of a rod that are associated with this 
kinematic group. If the nodes on the axial line of the rod are chosen to be sufficiently close, the element will 
be shallow relative to the secant passing through its nodes. Here the strains of the element can be expressed 
via the strains of the group: 

e = Z l l / l  2, ~e~=N~01mp, Z = 0 / l  ( p =  1,2; r n = 0 ,  1), 
(2.1) 
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No = 2 s ( s  - l)2/l 3, N ,  = 2s2 ( s  - / ) / / 3 ,  0 <~ s <~ I. 

Here l is the length of the element and the derivative with respect to the coordinate s is primed. 
We write the potential deformation energy of the finite element in the form 

l 
1 

= + + r rl 
0 

where EF,  Elpq, and GJ are the tensile, flexural, and torsional rigidities of the rod. Substituting (2.1) into 
(2.2) and integrating, we obtain the following expression for the potential energy as a quadratic form relative 
to the components of the vector of generalized elastic displacements: 

H = (1/2)utKu.  

Here K is the symmetric stiffness matrix whose nonzero components are of the form 

Kll  = E F / I  3, K22 = 16EIH/I 3, 

K25 = (1/2)K23, K33 = 16EI22/13, 

K44 = K22, K4s = K23, 

K23 = 16EI12/l 3, K24 = (1/2)K22, 

K34 = (1/2)K23, K35 = (1/2)K33, 

K55 = K33, K66 = GJ/l .  

The first and second variations of the potential energy are, respectively, the linear and quadratic forms 
of the form 611 = 6qtg and 621"I = 8qtH6q, where g and H are the gradient and the Hess matrix of the 
element, respectively, which are calculated by the formulas 

g = u ' P ,  P = K u ,  H = u ' K ( u ' )  t + P i u ~  ( i = 1 , . . . , 6 ) .  

Here u' and u i are matrices that  establish the dependence of the first and second variations of the components 
of the vector of generalized elastic displacements on the variations of the generalized coordinates of the 

n kinematic group. The derivatives below, which determine the matrices u ~ and u i , are found as the coefficients 
at the variations of generalized coordinates after the variations of the components of the vector u are derived 
using relations (1.1)-(1.3). 

The nonzero components of the matrix u ~ are calculated according to the formulas (no summation 
over m) 

801my 1 801my 1 
8ell  = brnbnxni, = bnA,npi, = ~ eijtbnznt)~mpi, 

80 1 80 1 
OoJoi = 2 ei j tDtj ,  8~1i = 2 eij tDjt ,  

Djt=AHjA02t -~12jA01k,  b 0 = - b l = - I  ( i , j , k = l ,  2,3,  re, n = 0 , 1 ,  and p = 1 , 2 ) ,  

where eijk = (ei x ej)ek are the Levi-Civita symbols. Here and below, the superscript v is omitted for brevity. 
The nonzero components of the matrices u i are determined by the formulas (no summation over i 

02611 = b,nbn, O2~91mP 
OXmiSXni 8~nk8O)mi 

8~OmiS~rn j 4 

and rn) 

1 
= ~ eijtbnA,,pj, 

020 = 1 (Dij + Dii - 26iiDtt),  
OW,niOWmj 4 

020 1 
0~,0~0~,u = 2 ( ~ i D t k  - D i i )  (i,  j ,  k, t = 1, 2, 3; m,  n = 0, 1; p = 1, 2) 

(6ij is the Kronecker symbol). 
The relations obtained enable one to calculate the gradient and Hess matrix of the finite element of 

the rod. 
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3. We shall consider the iterative method of finding the spectrum of solutions of nonlinear equilibrium 
problems for a discrete system under conservative loads. We assume that  the variations of the potential 
deformation energy l'I of a discrete system (an ensemble of finite elements) depend on N variations of the 
generalized coordinates: 6q1 , . . . ,  6qg, and the variation of the potential of external forces W depends on N + 1 
variations: ,hq], . . . ,  ~qN, ~qg+l. By 6qN+l, we mean the variation of the load parameter. 

The variational equilibrium equation is of the following form (equation of the Newton-Rafson method 
with a varying load parameter) at the kth iteration of some extension step: 

hk-l~ k + g/k-1 0. (3.1) i1 oqj = 
W k  Here hi~. = (h~. + hij ) , g/k = (g/rl +g/W)k (i = 1 , . . . , N ;  j = 1 , . . . , Y  + 1); g/t and h~j are the components of 

the gradient and the Hess matrix of the total potential energy of an ensemble of finite elements; the superscripts 
H and W refer to the potential deformation energy and the potential of external forces, respectively; the values 
of g/W and hinf are determined by the formulas gW = OW/Oqi and hi W = 02W/OqiOqj for the general case. 

System (3.1) consists of N equations for N + 1 unknowns. We construct the general solution of this 
system assuming that  the N-order square matrix lib/till is not degenerate. We seek the solution of Eqs. (3.1) 

which belongs to the Euclidean space R~v+] with the norm 6s k = (6qti~qti) 1/2 (i = 1 , . . . , N  + 1) in the 
following form (no summation over k): 

~q] k k k = 6qN+lxJ + YJ (j  = 1 , . . . ,  N) ,  (3.2) 

k and k where x I yj are obtained from the systems (i, j = 1 , . . . ,  N) 

hk-1 k hk-1 = 0; (3.3) ij z j  + i,N+l 

hk-1 t g~-I ij Yj + " = 0 .  (3.4) 

We have gO = 0 at the stationarity points of the total potential energy (equilibrium states) and 
yl = 0 according to (3.4). A transition from one to another stationary point is performed over the norm 
6s 1 = (hq~hql) 112 (k = 1 and i = 1 , . . . ,  N + 1) with subsequent refinement of the solution in the plane 
orthogonal to the vector 5q I, i.e., 6q~hq~ = 0 (k > 1 and i = 1 , . . . ,  N + 1) [19, 20]. With allowance for (3.2), 
we obtain the formulas required to find 6q~+l: 

�9 1 1~1]2 $q~+l = :t=6s][( 1 + xixi) for k = 1; (3.5) 

Sq~+l zl 1"/1 1 k = -  i Y i / t  + z i x i )  for k > l .  (3.6) 

The sign in (3.5) determines the direction of the continuation of the solution. In moving along the curve of 
equilibrium states in a prescribed direction, the sign in (3.5) is chosen at each step of continuation from the 
condition that  the angle between the vectors Sql = [6ql , . . . ,  6q~v+l]t calculated at two neighboring steps does 
not exceed 7r/2. 

The new positions of the metric vectors of the kinematic group can be found on the basis of the 
calculated variations of the generalized coordinates using formulas of [18] (no summation over k and m): 

k k-I k 
Xmi = Xmi + ~Xmi, 

,~kps k-1 k k-] k k k-1 k k k-I  k k 
= ~mpsSCOmi~O.~mi) )~mps q- Ameijs~mpj~C~ q" nm('~mpi~C~176 - 

( i , j , s = l ,  2 ,3 ,  m - - O ,  1, a n d p = l ,  2), 

A ~  sin t t k (1 t k 2 = = - cos 

In the case of singular points on the deformation curve, the square matrix ]lh~ is degenerate and it 
is necessary to distinguish singular points of two types, depending on whether system (3.3) is compatible or 
not. If the system is not compatible, the general solution (3.1) for k = 1 has the form 

~q~ = # i f j i ,  6qN+l =O ( i =  l , . . . , l  < N and j = l , . . . , N ) ,  
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TABLE 1 

Crit ical-point  n u m b e r  

3 

2 
4 
6 
8 

10 
12 

Solut ion [22] 

I 
4.904 I - -  
4.198 I 12.032 
4.096 [ 11.002 
4.062 10.671 
4.047 10.523 
4.038 10.444 

4.01 10.24 

26.589 
19.233 
18.065 
17.529 
17.224 

where #i are arbitrary factors and f j i  are the linearly independent nontrivial solutions of the homogeneous 
system of equations hijfj,.~ " = 0 (i, j = 1 , . . . ,  N and r = 1 , . . . ,1 ) .  For convenience, we assume f #  to be 
chosen such that  the condition f # f j p  = gp, holds. Thus, the column vectors of the matrix Ilfj~ll determine 
the possible directions of continuing the solution in the vicinity of a singular point. Here a transition to ~he 
bifurcating solutions is performed with respect to the norm 

6s 1 = (#r#r) I/2 (k = 1 and r = 1 , . . . , 1 )  (3.7) 

with further refinement according to formulas (3.2) and (3.6). 
If detllh~162 = 0 and system (3.3) is compatible, which is determined by the condition fj,.hs o = 0 

[20], the general solution is written in the form 
6q~ 1 I = ~qlv+lxj + Izrfjr ( j  = 1 , . . . ,  N, and r = 1 , . . . ,  l < N). 

In this case, the  solutions at any point in the neighborhood of a singular point can be obtained by both 
formulas (3.5) and (3.6) and by formulas (3.7) and (3.6). We note that  at I = 1 the points of the types 
considered are known as the limit and the bifurcation point [21]. 

The stability problem for the equilibrium states obtained is solved based on the Sylvester criterion on 
the positive definiteness of the matrix [[hOt[ [ . Such information can be easily obtained by directly using the 
Gauss method in solving systems (3.3) and (3.4). 

4. We shall consider the application of the developed algorithm in analysis of the stability and post- 
critical equilibrium forms of a cantilevered one-section beam loaded by a concentrated force P at its free end 
in the plane of largest rigidity. The following characteristics were adopted for the beam: Lib  = 10, b/h = 40, 
and v = 0.3 (L is the beam length, b and h are the width and thickness of the cross section, and v is the 
Poisson ratio). 

Table 1 gives the dependences of the critical load parameter A. = p .L2 / v /G-J .  E I  ( E l  is the smallest 
flexural rigidity of the beam) on the number of finite elements n for the first three critical points. For 
comparison, we present the analytical solution of [22] derived under the assumption that  the beam is not 
deformable in the subcritical state. 

The post-critical behavior was studied with the use of a uniform grid consisting of l0 finite elements. 
Figure 1 shows the nonlinear deformation characteristics where curves 1-3 correspond to the displacements 
ui (i = 1, 2, and 3) of the  beam's free end in the direction of the xi axes, and the solid and dashed curves 
indicate the stable and unstable states, respectively. It follows from calculations that ,  having lost stability, 
the displacement u2, which corresponds to the out-of-plane deformation of the beam, increases to a certain 
limit and then decreases. For example, in bifurcating the solution from the first critical point, the maximum 
displacement is u~ ax = 0.485L. 

Figures 2 and 3 show, on a real scale, the forms of beam deformation in the post-critical region, which 
correspond to the solution bifurcating from the first two bifurcation points. 
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Fig. 2 
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We shall consider the spectrum of nonlinear solutions in the problem of a circular ring of a narrow 
rectangular cross section compressed by two radial forces P.  The ring is chaxa~:terized by the following 
parameters: Rib = 10, b/h = 40, and v = 0.3 (R is the ring radius). The deformation forms that axe 
symmetric relative to the plane Oxlx3 were examined. Therefore, discretization was performed for half the 
ring using a uniform grid comprising 28 finite elements. As additional numerical studies have shown, the 
adopted degree of discretization is sufficient to obtain nonlinear solutions with high accuracy in a wide range 
of form variations of the ring. No restrictions axe imposed on the possibility of self-crossing the ring. 

Figure 4 shows the nonlinear deformation characteristic, where w is the deflection at the point of 
force application, EI  is the smallest flexural rigidity, A = PR2/EI is a load parameter, the dot-and-dashed 
curve refers to the linear solution of the problem, and the solid and dashed curves refer to the stable and 
unstable equilibrium states, respectively. We note that the nonlinear solution at 0 ~< w/R <~ 1 was obtained, 
for example, by Popov [23] for an unextensional ring. The study of the problem in a spatial formulation with 
the use of the developed algorithm allowed us to reveal the previously unknown singulax points and to study 
the bifurcating solutions. The basic branch of the equilibrium states, which corresponds to the monotonically 
increasing load, is characterized by plane symmetrical flexural forms of equilibrium of the ring (Fig. 5a). As 
the load parameter grows to A. = 11.75, the possibility of branching the equilibrium forms (bifurcation point 
B1) appears. The existence of the point B1 for an unextensional ring was shown by Seide and Albano [24] 
in an analytical manner, and it was found that A. = 11.9, which differs little from the result obtained using 
the developed algorithm. The nonlinear solution which bifurcates from the basic branch at the point B1 and 
contains the limiting point L1 was analyzed by Kuznetsov and Soinikov [25]. The equilibrium forms for a ring 
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which correspond to the branch B1-L1 are plane and flexurable, but they do not possess the symmetry  of 
deformation (Fig. 5b and c). 

Calculations have shown that  there is one more bifurcation point B2 on the basic branch with A, = 19.8 
at which a transition to unstable spatial configurations of the ring is possible. This transit ion is connected with 
the rotation of the ring about the Ox2 axis (Fig. 6a). An analysis of the nonlinear solution that  bifurcates at 
the point B2 made it possible to find the limit point L2 (A, = 1.27) and the bifurcation point B3 (A, = 1.97) 
such that  having passed through it the spatial forms of equilibrium become stable (Fig. 6c). The forms of 
deformation of the ring that  correspond to the branch B2-L2-B3 are flexural-torsional, the projection of the 
axial line of the ring onto the plane Oxlx2 being a symmetric curve. 

Bifurcation of the solution at the point B3 means a transition to spatial unstable flexural-torsional 
forms which do not possess any symmetry of deformation (Fig. 6b). 

The forms of equilibrium for a ring were reproduced in the experiment on a thin celluloid model. Figure 
7 shows a photograph of the deformed state of the ring that  corresponds to Fig. 6b (state 6). 

In concluding, we note tha t ' t he  finite-element model of a rod that  we constructed and the numerical 
algorithm developed allow one to solve effectively the complicated problems of spatial deformation of 
curvilinear rods in the presence of many singular points, to examine the multiple bifurcation of solutions, 
and to analyze the stability of the equilibrium states found. 
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